QUESTION BANK 2016 SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 **OUESTION BANK** Subject with Code : ADVANCED DIGITAL SIGNAL PROCESSING(16EC3802) Course & Branch: M.Tech – (DECS) Year & Sem: I-M.Tech & I-Sem UNIT –I **OVERVIEW OF SIGNALS AND SYSTEMS** 1. (a) What are the types of discrete time signals? [5M] (b) Explain the sequence representations of sequences. [5M] 2. (a) Explain the types of discrete time systems with example. [5M] (b) Explain simple low-pass FIR digital filters and high-pass FIR digital filters. [5M] 3. (a) State LTI discrete time systems. [3M] (b) Explain the classification of LTI discrete time systems with examples. [7M] 4. (a) Check whether the following systems are LTI or not: (i). Y(n)=2x(n+2)-x(n-2)[4M] (ii) $Y(n) = n^2 x(2n)$ [4M] (b) What is linear time invariant system? [2M] 5. (a) What is convolution? State and prove convolution theorem of two signals using [6M] Continuous time Fourier transforms. (b) What is the difference between DFT and CFT? [4M] 6. (a) Give the expression for DFT pair. [3M] (b) Explain the energy spectrum of a discrete time sequence. [7M] 7. What is the relationship between impulse response of LTI-DTS and its frequency response? [10M] Prove the relationship using convolution summation. 8. (a) Define an LTI System and show that the output of an LTI system is given by the [5M] Convolution of Input sequence and impulse response. (b) Give the expressions for types of linear phase transfer function. [5M] 9. (a) Prove that the system defined by the following difference equation is an LTI [5M] System. Given y(n) = x(n+1)-3x(n)+x(n-1); $n \ge 0$. (b) Explain the inverse discrete time systems. [5M] 10. (a) Define DFT and IDFT. State any four properties of DFT. [5M] (b) Find 8-Point DFT of the given time domain sequence $x(n) = \{1, 2, 3, 4\}$. [5M]

<u>UNIT –II</u>

DIGITAL FILTER STRUCTURE AND DESIGN

1.	(a) Express the realization of a digital sine-cosine generator.	[5M]
	(b) Discuss about the computational complexity of digital filter structures	[5M]
2.	(a) Explain the interpolation process with an example.	[7M]
	(b) Explain the need for multirate signal processing.	[3M]
3.	Explain the Pade's approximation method for designing IIR filter.	[10M]
4.	(a) Develop a minimum-multiplier realization of a length-9 type 3 FIR transfer function.	[5M]
	(b) Realize the following transfer functions in Gray-Markel form and comment on BIBO	[5M]
	Stability. $H(z) = \frac{2+z^{-1}+2z^{-2}}{1-0.75z^{-2}+(1/8)z^{-2}}$.	
5.	(a) Explain the computational complexity of Digital filter structures.	[5M]
	(b) Explain the single multiplier sine-cosine generator with diagram.	[5M]
6.	(a) Explain the realization of all pole IIR transfer function.	[5M]
	(b) Explain the Gray-Markel method of realization of IIR transfer function.	[5M]
7.	(a) Explain the realization of arbitrary FIR transfer function.	[5M]
	(b) Realize the 4 th order FIR transfer function using cascaded lattice structure.	[5M]
	$H_4(z) = 1 + 1.2Z^{-1} + 1.12Z^{-2} + 0.12Z^{-3} - 0.08Z^{-4}$	
8.	(a) Explain the realization of power - symmetric FIR cascaded lattice structure.	[5M]
	(b) Realize the 4 th order FIR transfer function using power - symmetric FIR cascaded lattice	[5M]
	Structure . $H_4(z) = 1 + 0.3Z^{-1} + 0.2Z^{-2} + 0.376Z^{-3} - 0.06Z^{-4} + 0.2Z^{-5}$	
9.	Explain the computationally efficient FIR digital filters	
	(a) Interpolated FIR filter	[5M]
	(b) Frequency response masking approach.	[5M]
10.	(a) Explain the state space structure of Digital filters.	[5M]
	(b) Explain the poly-phase structure of Digital filters.	[5M]

<u>UNIT –III</u>

FFT ALGORITHEMS

1.	(a) Define Multi-rate systems and Sampling rate conversion.	[5M]
	(b) Discuss the process of n Decimation by a factor D and explain how the aliasing	[5M]
	effect can be eliminated.	
2.	(a) Explain the interpolation process with an example.	[5M]
	(b) Explain the need for multi-rate signal processing.	[5M]
3.	Explain with necessary equations and block diagram, the implementation of the	[10M]
	chirp-z transform for computing the DFT.	
4.	(a) Explain the decimation process with an example.	[5M]
	(b) What is the need for interpolation and decimation?	[5M]
5.	(a) Explain Goertzel algorithm for the computation of DFT.	[5M]
	(b) Derive the flow graph of the decimation in frequency FFT algorithm for $N = 8$.	[5M]
6.	(a) Explain the time-domain and frequency domain analysis of sampling rate conversion	[5M]
	by a factor of I/D.	
	(b) Perform the two-band poly-phase decomposition of the transfer function: $H(z) = \frac{2+Z^{-4}}{1+0.75Z^{-1}}$.	[5M]
7.	(a) Give the frequency domain analysis of Decimator.	[5M]
	(b) Explain how to implement Multirate filter using poly phase decomposition.	[5M]
8.	With the help of block diagram explain the sampling rate conversion by a rational	[10M]
	Factor 'I/D'. Obtain necessary expressions.	
9.	(a) Explain the split – radix FFT.	[5M]
	(b) Compare the FFT algorithms.	[5M]
10.	(a) Explain the Cooley-Tukey FFT algorithm for FFT computation.	[5M]
	(b) Explain the prime factor algorithm for FFT computation.	[5M]

<u>UNIT –IV</u>

POWER SPECTRAL ESTIMATION

1.	(a) Suppose we have $N = 1000$ samples from a sample sequence of a random process. Determine	[7M]
	the frequency resolution of the Bareltt, Welch (50% overlap) methods for a quality factor $Q = 10$).
	(b) How the parametric methods are overcome the limitations of non-parametric methods?	[3M]
2.	(a) Describe MA method for Power Spectrum Estimation with relevant Expressions.	[5M]
	(b) Analyze and discuss Non Parametric Estimation of Power spectrum using ARMA model.	[5M]
3.	(a) Derive the Yule walker equation for spectral estimation.	[6M]
	(b) Compare parametric and non-parametric methods of spectral estimation.	[4M]
4.	(a) Explain Bartlett method of power spectrum estimation.	[5M]
	(b) Derive an expression for AIC of ARMA model for power spectrum estimation.	[5M]
5.	(a) Discuss any one of the non-parametric methods for power spectrum estimation	[5M]
	(b) For the AR process of the order two $x(n)=a1 x(n-1) + a2 x(n-2) w(n)$.	[5M]
	Where a1 and a2 are constants $w(n)$ is a white noise process of zero mean and variance .	
	Calculate the mean and autocorrelation of $x(n)$.	
6.	(a) Explain clearly the Barlett method of implementation for power spectral estimation and	[6M]
	Compare it Blackman-Tukey procedure.	
	(b) Compare various non-parametric methods of power spectrum estimation with respect to	[4M]
	Figure of merit, quality, variability, resolution and number of computations.	
7.	(a) Discuss the method of power spectrum estimation using Blackman-Tukey method.	[4M]
	(b) Bring out the relationship between the parameters of AR, MA and ARMA models of	[6M]
	Power spectrum estimation and autocorrelation matrix of input data	
8.	(a) Explain Power spectrum estimation by Weltch method.	[5M]
	(b) Design and explain Power Spectrum Estimation by Burg Method.	[5M]
9.	(a) Discuss about computation of Energy density spectrum	[5M]
	(b)) write short notes on periodogram.	[5M]
10.	(a) Explain the relation between autocorrelation and model parameters.	[5M]
	(b) Explain the use of DFT in power spectrum estimation.	[5M]

<u>UNIT-V</u>

ANALYSIS OF FINITE WORDLENGTH EFFECTS IN FIXED-POINT DSP SYSTEMS

1.	(a) Explain the methods to represent numbers for digital computation.	[5M]
	(b) Explain in detail, the finite word length effects in IIR digital filter.	[5M]
2.	(a) Explain the applications of DSP in oversampling sigma-delta D/A convertor.	[5M]
	(b) Explain some of the special audio effects that are implemented in digital for	[5M]
	musical sound processing.	
3.	(a) Show that the standard deviation is proportional to the length of the FIR filter due to	[5M]
	quantization of coefficients.	
	(b) Derive the expression for signal to noise ratio of a first order IIR low pass filter.	[5M]
4.	(a) Explain Oversampling D/A converter.	[5M]
	(b) Explain DTMF.	[5M]
5.	(a) Explain Spectral analysis of sinusoidal signals.	[5M]
	(b) The system difference equation is $y(n) = 0.5 y(n-1) - 0.6 y(n-2) + 2x(n)$.	[5M]
	Calculate quantization step, variance of the error signal and variance of the	
	Quantization noise at the output for a input signal in the range 10 V.	
6.	(a) Briefly discuss about the musical sound processing by DSP.	[5M]
	(b) Explain in detail about the oversampling process in A/D converter.	[5M]
7.	(a) Compare fixed and floating type of processors.	[5M]
	(b) Discuss about the finite word length effects in computation of FFT algorithms.	[5M]
8.	(a)) Define spectrum and hence discuss the importance of spectral analysis.	[4M]
	(b) Explain in detail about the over sampling process in D/A converter.	[6M]
9.	(a) Explain clearly about quantization in ADC and the effect of it on data length.	[5M]
	Relate length to noise power spectral density.	
	(b) Explain Spectral analysis of non-sinusoidal signals.	[5M]
10.	(a) Explain discrete time analytic signal generation.	[6M]
	(b) Briefly explain STFT.	[4M]

Prepared by: P. Gayathri and RPVG Ashok Reddy.

Advanced Digital Signal Processing